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Finite-rate-of-innovation (FRI) signals are ubiquitous in applications such as ultrasound, radar, 

and time of flight imaging [1, 2]. FRI signals can be sampled at sub-Nyquist rates and 

reconstructed using sparse-recovery algorithms [2, 3]. The reconstruction is performed from 

the Fourier samples of the FRI signals. The reconstruction quality depends on the choice of 

Fourier samples and recovery method. In this work, we jointly optimize the choice of Fourier 

samples and reconstruction parameters. Our framework is a fusion of a greedy subsampling 

algorithm and a learning-based sparse recovery method. Unlike existing techniques [4-6], the 

proposed algorithm is flexible to changes in the sampling rate and exact knowledge of the FRI 

pulse is not required. The proposed joint design leads to lower reconstruction error for FRI 

signals compared to non-learning-based approaches such as random sampling and greedy 

CRLB-based sampling.  
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Fig. 1 A comparison of performances different 

methods as a function of number of samples. 

Fig. 2: An example of recovery performances 

for different algorithms. 

mailto:mulleti.satish@gmail.com
mailto:yonina.eldar@weizmann.ac.il

